Website translation into 96 languages

Thursday 13 December 2018

Прозрачная клетка позволит увидеть кота Шредингера невооруженным глазом




Ученые из Венского университета создали прибор, достаточно чувствительный для прямого наблюдения за квантовым взаимодействием между наночастицей, ее световой клеткой и стенками фотонного кристалла. В будущем устройство позволит увидеть кота Шредингера, который существует в состоянии квантовой суперпозиции, невооруженным глазом. Работа физиков опубликована в онлайн-библиотеке arХiv.org.

Мысленный эксперимент с котом, придуманный Эрвином Шредингером, уже давно стал объектом многочисленных экспериментов по исследованию квантовой суперпозиции.

Ученый хотел показать неполноту квантовой механики при переходе от субатомных систем к макроскопическим. В закрытый ящик помещаются кот и механизм, открывающий емкость с ядом в случае распада радиоактивного атома. Вероятность распада за час — 50%, то есть вероятность того, что кот выживет или умрет, составляет 50%. В соответствии с принципами квантовой механики получается, что кот, сидящий в ящике, и жив, и мертв одновременно.

Осуществить такой эксперимент в реальности непросто, и ученые много лет пытаются создать кота Шредингера, который можно увидеть невооруженным глазом.

Исследователи из Венского университета попытались создать своеобразную клетку для кота, поймав молекулы в оптические щипцы. Обычно такие щипцы захватывают отдельные молекулы или атомы и удерживают их на месте несколькими лучами света, сталкивающимися внутри фотонного кристалла.

Однако у стандартных щипцов есть проблема — они не позволяют установить точное положение молекулы внутри ловушки и определить ее состояние, а значит, и не позволяют увидеть ее.

Физики частично решили эту проблему, разместив «кота» не внутри, а снаружи ловушки, недалеко от луча лазера. Это позволило повысить точность обнаружения частицы в два раза.

В ближайшее время мы повысим точность работы этого устройства на четыре порядка. Это позволит нам реализовать нашу главную мечту — научиться напрямую управлять квантовым состоянием наночастицы или измерять его, наблюдая за ее взаимодействиями со стенками «ящика», - сообщают ученые.